127 research outputs found

    Tumor-vascular interactions promote STING-driven inflammation in the tumor microenvironment

    Get PDF
    The recruitment of T cells following intratumoral administration of Stimulation of Interferon Genes (STING) agonists in the tumor microenvironment (TME) is a critical event in the STING-driven antitumor immune response, a pathway with great relevance in the context of cancer immunotherapy. We have previously demonstrated that LKB1 mutation is associated with suppression of tumor cell STING levels and reduced production of T-cell chemoattractants such as CXCL10 in KRAS-driven non-small cell lung cancer (NSCLC). Consistent with this, immunohistochemical staining of patient samples showed poor infiltration of CD3, CD4, and CD8 T cells into LKB1 negative versus LKB1 intact cancer epithelium, and instead, retention of T-cells in stroma. To examine how LKB1 alters immune cell recruitment in a STING-dependent manner, we used a 3-D microfluidic co-culture system to study interactions between vasculature and tumor spheroids derived from a KRAS/LKB1 mutated (KL) cell line with LKB1 reconstitution +/- STING deletion. To form the vasculature, we co-cultured tumor spheroids with fibroblasts and endothelial cells for 7 days, and identified changes in morphology, cytokine production, and gene expression that occur in co-culture. We first observed that co-culture induced synergistic production of multiple immune cell chemo-attractants such as CXCL10, CCL2, CCL5, and G-CSF. Interestingly, this more physiologic ex vivo tumor model of LKB1 reconstitution revealed particularly strong cooperative production of STING-dependent cytokines such as CXCL10 in the vasculature. Moreover, STING depletion in LKB1 reconstituted tumor cells did not significantly attenuate production of CXCL10 and other cytokines in co-culture, suggesting that tumor/vessel interaction may promote STING activation in the vasculature regardless of cancer cell-intrinsic STING function. Furthermore, although there was no appreciable response after treatment of KL cancer cells with cGAMP based STING agonists, treatment of isolated 3-D vascular networks with cGAMP enhanced vascular permeability and increased production of CXCL10 and CCL5, possibly contributing to defective chemokine gradients that retain T cells near the vasculature. Thus, developing these more complex models that incorporate the vasculature may elucidate important aspects of STING biology and may ultimately aid further development of effective immunotherapies targeting this signaling axi

    Tumor innate immunity primed by specific interferon-stimulated endogenous retroviruses.

    Get PDF
    Mesenchymal tumor subpopulations secrete pro-tumorigenic cytokines and promote treatment resistance1-4. This phenomenon has been implicated in chemorefractory small cell lung cancer and resistance to targeted therapies5-8, but remains incompletely defined. Here, we identify a subclass of endogenous retroviruses (ERVs) that engages innate immune signaling in these cells. Stimulated 3 prime antisense retroviral coding sequences (SPARCS) are oriented inversely in 3' untranslated regions of specific genes enriched for regulation by STAT1 and EZH2. Derepression of these loci results in double-stranded RNA generation following IFN-γ exposure due to bi-directional transcription from the STAT1-activated gene promoter and the 5' long terminal repeat of the antisense ERV. Engagement of MAVS and STING activates downstream TBK1, IRF3, and STAT1 signaling, sustaining a positive feedback loop. SPARCS induction in human tumors is tightly associated with major histocompatibility complex class 1 expression, mesenchymal markers, and downregulation of chromatin modifying enzymes, including EZH2. Analysis of cell lines with high inducible SPARCS expression reveals strong association with an AXL/MET-positive mesenchymal cell state. While SPARCS-high tumors are immune infiltrated, they also exhibit multiple features of an immune-suppressed microenviroment. Together, these data unveil a subclass of ERVs whose derepression triggers pathologic innate immune signaling in cancer, with important implications for cancer immunotherapy

    Synthetic Lethal Interaction between Oncogenic KRAS Dependency and STK33 Suppression in Human Cancer Cells

    Get PDF
    An alternative to therapeutic targeting of oncogenes is to perform “synthetic lethality” screens for genes that are essential only in the context of specific cancer-causing mutations. We used high-throughput RNA interference (RNAi) to identify synthetic lethal interactions in cancer cells harboring mutant KRAS, the most commonly mutated human oncogene. We find that cells that are dependent on mutant KRAS exhibit sensitivity to suppression of the serine/threonine kinase STK33 irrespective of tissue origin, whereas STK33 is not required by KRAS-independent cells. STK33 promotes cancer cell viability in a kinase activity-dependent manner by regulating the suppression of mitochondrial apoptosis mediated through S6K1-induced inactivation of the death agonist BAD selectively in mutant KRAS-dependent cells. These observations identify STK33 as a target for treatment of mutant KRAS-driven cancers and demonstrate the potential of RNAi screens for discovering functional dependencies created by oncogenic mutations that may enable therapeutic intervention for cancers with “undruggable” genetic alterations.National Institutes of Health (U.S.) (grant R33 CA128625)National Institutes of Health (U.S.) (grant NIH U54 CA112962)National Institutes of Health (U.S.) (grant P01 CA095616)National Institutes of Health (U.S.) (grant P01 CA66996)Starr Cancer ConsortiumDoris Duke Charitable FoundationMPN Research FoundationDeutsche Forschungsgemeinschaft (grant SCHO 1215/1-1)Deutsche Forschungsgemeinschaft (grant FR 2113/1-1)Brain Science FoundationLeukemia & Lymphoma Society of Americ

    Characterizing genomic alterations in cancer by complementary functional associations.

    Get PDF
    Systematic efforts to sequence the cancer genome have identified large numbers of mutations and copy number alterations in human cancers. However, elucidating the functional consequences of these variants, and their interactions to drive or maintain oncogenic states, remains a challenge in cancer research. We developed REVEALER, a computational method that identifies combinations of mutually exclusive genomic alterations correlated with functional phenotypes, such as the activation or gene dependency of oncogenic pathways or sensitivity to a drug treatment. We used REVEALER to uncover complementary genomic alterations associated with the transcriptional activation of β-catenin and NRF2, MEK-inhibitor sensitivity, and KRAS dependency. REVEALER successfully identified both known and new associations, demonstrating the power of combining functional profiles with extensive characterization of genomic alterations in cancer genomes

    BAY61-3606 Affects the Viability of Colon Cancer Cells in a Genotype-Directed Manner

    Get PDF
    Background: K-RAS mutation poses a particularly difficult problem for cancer therapy. Activating mutations in K-RAS are common in cancers of the lung, pancreas, and colon and are associated with poor response to therapy. As such, targeted therapies that abrogate K-RAS-induced oncogenicity would be of tremendous value. Methods: We searched for small molecule kinase inhibitors that preferentially affect the growth of colorectal cancer cells expressing mutant K-RAS. The mechanism of action of one inhibitor was explored using chemical and genetic approaches. Results: We identified BAY61-3606 as an inhibitor of proliferation in colorectal cancer cells expressing mutant forms of K-RAS, but not in isogenic cells expressing wild-type K-RAS. In addition to its anti-proliferative effects in mutant cells, BAY61-3606 exhibited a distinct biological property in wild-type cells in that it conferred sensitivity to inhibition of RAF. In this context, BAY61-3606 acted by inhibiting MAP4K2 (GCK), which normally activates NFκβ signaling in wild-type cells in response to inhibition of RAF. As a result of MAP4K2 inhibition, wild-type cells became sensitive to AZ-628, a RAF inhibitor, when also treated with BAY61-3606. Conclusions: These studies indicate that BAY61-3606 exerts distinct biological activities in different genetic contexts

    Comparing journalism cultures in Britain and Germany: confrontation, contextualization, conformity

    Get PDF
    Many British newspapers proclaim strongly partisan political and moral positions, with headlines such as ?Get Britain out of the EU.? In contrast, German newspapers, during national events such as the refugee crisis, often take on the role of reflective observers. Previous comparative research has shown a link between journalists? output and professional attitudes. Using data from the Worlds of Journalism Study, this article analyses the professional attitudes of British and German journalists (N=1475) across three constituents of journalism culture: societal, epistemological, and ethical. Our analysis shows significant differences in all three constituents. We conclude that British journalists conceive of their professional role as more confrontational to those in power than their German colleagues. We also find some evidence that German journalists believe it more important to provide context and analysis ? aiming to assist audiences in their civic roles ? and that they are more likely to conform to professional codes, although only in general terms. Our findings contradict some earlier comparative studies that claimed a more passive role for British journalists. Our findings may also hold interest for others engaged in international comparative research, showing how the two-country comparison can identify, and account for, what is hidden in multi-country research designs

    MicroRNA-140 mediates RB tumor suppressor function to control stem cell-like activity through interleukin-6

    Get PDF
    We established an in vitro cell culture system to determine novel activities of the retinoblastoma (Rb) protein during tumor progression. Rb depletion in p53-null mouse-derived soft tissue sarcoma cells induced a spherogenic phenotype. Cells retrieved from Rb-depleted spheres exhibited slower proliferation and less efficient BrdU incorporation, however, much higher spherogenic activity and aggressive behavior. We discovered six miRNAs, including mmu-miR-18a, -25, -29b, -140, -337, and -1839, whose expression levels correlated tightly with the Rb status and spherogenic activity. Among these, mmu-miR-140 appeared to be positively controlled by Rb and to antagonize the effect of Rb depletion on spherogenesis and tumorigenesis. Furthermore, among genes potentially targeted by mmu-miR-140, Il-6 was upregulated by Rb depletion and downregulated by mmu-mir-140 overexpression. Altogether, we demonstrate the possibility that mmu-mir-140 mediates the Rb function to downregulate Il-6 by targeting its 3\u27-untranslated region. Finally, we detected the same relationship among RB, hsa-miR-140 and IL-6 in a human breast cancer cell line MCF-7. Because IL-6 is a critical modulator of malignant features of cancer cells and the RB pathway is impaired in the majority of cancers, hsa-miR-140 might be a promising therapeutic tool that disrupts linkage between tumor suppressor inactivation and pro-inflammatory cytokine response.Supplementary Table1 and Supplementary Table2: We offer the table data with an Excel fil
    corecore